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Abstract. The electronic structure of n–i–p–i Si superlattices is investigated by the tight-
binding renormalization method. Strong anisotropy of the hole masses in the in-plane direction
is found and strong localization of the electron and hole wave-functions in the growth direction
is reported. For the structure studied, a type-II configuration is found with nearly zero overlap
between electron and hole wave-functions. The latter property is discussed in view of its possible
device applications.

Silicon is certainly the most widely used material in semiconductor devices. The reason
for this lies essentially in the well controlled way of introducing both n-type and p-type
dopants during the epitaxial growth [1]. This has opened the way to novel and improved
device geometries for both fundamental and applied research. One of the simplest yet most
important geometries consists in alternated n-type and p-type doped regions in an otherwise
homogeneous (intrinsic) structure. The outcome is a doped structure known as an n–i–p–i Si
superlattice. The carriers in this device are subject to a sawtooth potential, whose strength
and shape are determined by the doping concentrations and extension of the intrinsic region
[2, 3]. This results in a type-II confinement, where electrons and holes are confined in
spatially separated regions. Such an electronic configuration thus allows very low radiative
recombination rates and in-plane high mobilities due to reduced electron–hole scattering
mechanisms. Moreover, under certain conditions, dictated by the doping concentrations, n–
i–p–i Si superlattices could be very good candidates to investigate fundamental phenomena
such as thermodynamically stable excitonic condensate phases [4, 5].

In this letter, we investigate theoretically, with the tight-binding renormalization method
[6, 7], the electronic structure of thick n–i–p–i Si superlattices. The atomistic character of
the approach allows us a detailed study of all the bulk Si band structure effects on the
carrier properties, thus giving more insight into the possibilities of this device for real
applications. We first give here a brief presentation of the theoretical apparatus used in
these calculations and discuss the range of validity of the approximations made in order to
describe the sawtooth potential. We then show the in-plane dispersions of both types of
carrier and correlate them with the bulk Si band structure. Finally, the electron and hole
wave-functions are presented to show the extreme type-II band configuration that can be
attained in a real structure.

We start from a localized basis representation of the bulk silicon crystal Hamiltonian
H(k). This is obtained by using a Slater–Köster [8] tight-binding model with an orthogonal
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Figure 1. Periodic potentialV (z) generated by the n–i–p–i charge distribution. We have
assumeddn = 40 Å, di = 160 Å and dp = 40 Å. The interlayer separation isd = 1.35 Å.

basis built from s and p atomic orbitals. In this approach, the Hamiltonian matrix elements
are given in terms of the Slater–Köster parameters. We use a recently obtained [9] accurate
parametrization which includes only first- and a few selected second-neighbour interactions.
This parametrization includes spin–orbit coupling and gives an accurate description of the
energy bands and effective masses near the fundamental gap.

The effect of doping on the electronic structure is considered by superimposing on the
(100) silicon superlattice a suitable potentialV (z) along the growth direction as shown
below. This potential is caused by the positively charged ionized donors in the n-type
layers and the negatively charged acceptors in the p-type layers. The n–i–p–i superlattice
is thus represented as a multilayer structure, and the dimension of the supercell along the
growth direction is given by the spatial period of the doping profile. We focus our attention
on the particular structure of the n–i–p–i superlattice potential (figure 1), generated by n-
doped, p-doped and intrinsic regions of lengthsdn = 40 Å, di = 160 Å and dp = 40 Å
respectively; the corresponding supercell contains more than 1200 atoms, and a huge matrix
for H(k) results. However, since we restrict ourselves only to first- and second-neighbour
interaction, we can handle this matrix by the renormalization procedure. Let us briefly
summarize the steps followed in this procedure. We begin by writing the Green function
of a given isolated layer: this Green function is represented by a matrix much smaller than
theH(k) matrix. Then we add on either side of our initial layer two new layers, and we
consider the corresponding interlayer interactions. The presence of the two new layers is
taken into account by a self-energy term in the original isolated layer Green function. In
this way, the system of three layers is represented by a new single effective layer with a
renormalized Green matrix and renormalized interlayer interactions. This procedure can
be iterated until all the layers in the supercell are added, and the final renormalized Green
matrix is the Green matrix of the whole superlattice. At each step of the iteration, the
dimension of the matrices involved does not change, and only inversion of small matrices
is required in the numerical calculation. Furthermore, in order to take into account also
the second-neighbour interactions we have to consider pairs of layers and not single layers
in the procedure. Further details on the renormalization procedure and a discussion of its
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Figure 2. In-plane conduction (a), and valence (b), band structure of the n–i–p–i silicon
superlattice, for the parameters chosen in figure 1.

applicability to several semiconductor systems can be found in [6] and [7].
We consider here the impurity band regime only [2], i.e. doping concentrations for which

the band merging condition is not reached. For silicon this corresponds to concentrations
of no more thanN ≈ 2× 1019 cm−3 dopants [10]. In this regime a simple space-charge
model can be used to calculate the potential shape induced by the dopant distributions. We
use a doping concentration ofn = 1019 cm−3 for donors andp = 1019 cm−3 for acceptors.
The resulting sawtooth potential obtained by integration of the Poisson equation is plotted
in figure 1. We have assumed that the doping concentration is homogeneous, i.e. the doping
concentrationsn andp are constant in the respective doping layers. Doping profiles are
also assumed to be abrupt and potential fluctuations are neglected. Thus the periodic space
charge potentialV (z) is parabolic in the ionized impurity regions and linearly varying in
the intrinsic layers.

Table 1. In-plane effective masses, around0, for the silicon n–i–p–i superlattice, for two
different doping concentrations. The masses are given in units of the bare electron mass; doping
concentrations are given in cm−3.

m1HH m1LH mTHH mTLH me1

Bulk 0.284 0.245 0.473 0.184 0.200
NA,D = 1018 0.322 0.389 0.904 0.226 0.211
NA,D = 1019 0.365 0.420 0.905 0.260 0.205

We report in figure 2 the calculated electronic structure for the conduction and valence
bands of n–i–p–i superlattices with the parameters defined above. The electronic levels
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Figure 3. Wave-function amplitude, as a function of the superlattice layer index, for (a) heavy
and (b) light holes, and for the lowest conduction electron (c). We can see that electrons are
localized in the n layers and holes in the p layers.

in the conduction band approach the spectrum of a harmonic oscillator due to the almost
parabolic form of the confining potential. In the valence band the confinement produces
strong mass anisotropy. This effect is known as mass inversion: at the0 point, the HH
mass is confined at lower energy with respect to the LH, thus producing the characteristic
anticrossing behaviour in the in-plane Brillouin zone. The effect of doping on the mass is
analysed in table 1. We report the value of the HH and LH masses calculated at the0 point
along the1 and T directions of the in-plane Brillouin zone; the electronic bulk value refers
to the transversal mass in the1 valley. Two different doping concentrations are considered.
We see that mass anisotropy does not strongly depend on the doping concentration, and that
the electronic mass is almost independent of the confinement.

In figure 3 we show the spatial localization, at0, of the wavefunctions of the heavy-
hole and of the light-hole subbands and of the lowest electron conduction band. We can see
that electrons and holes are clearly localized in separated regions. We also detect typical
oscillations in the electron wave-function due to the valley interference [7]. We wish to
stress that our treatment allows us to overcome the difficulties encountered by effective mass
approaches when dealing with intervalley interactions in the evaluation of electronic states.
We properly consider, from the beginning, all the equivalent valleys on the same footing
through the microscopic interactions in the HamiltonianH(k). These interactions enter also
when the superimposed modulating n–i–p–i periodic potential generates the superlattice. The
oscillations of the d.o.s. corresponding to the lowest longitudinal e1 electronic level at0 are
a fingerprint of the interference between the silicon valleys along (001) and (001̄) directions.
In fact they indicate that this level is indeed a doublet generated by the superlattice potential.
With the same procedure we can also evaluate the conduction bands originated from the
fourfold degenerate valleys orthogonal to the (001) direction; as well known [11], they lie
at higher energies with respect to the electronic longitudinal bands shown in figure 2(a),
due to the lower value of the electron transverse mass.
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We finally note that, along the same lines shown before, we can handle any shape of
superimposed doping profile, thus the method is well suited to study realistic situations in
compensated and uncompensated superlattices.

CP acknowledges the Swiss National Foundation.
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